Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 9(7): 2097-2106, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31040111

ABSTRACT

Binary expression systems like the LexA-LexAop system provide a powerful experimental tool kit to study gene and tissue function in developmental biology, neurobiology, and physiology. However, the number of well-defined LexA enhancer trap insertions remains limited. In this study, we present the molecular characterization and initial tissue expression analysis of nearly 100 novel StanEx LexA enhancer traps, derived from the StanEx1 index line. This includes 76 insertions into novel, distinct gene loci not previously associated with enhancer traps or targeted LexA constructs. Additionally, our studies revealed evidence for selective transposase-dependent replacement of a previously-undetected KP element on chromosome III within the StanEx1 genetic background during hybrid dysgenesis, suggesting a molecular basis for the over-representation of LexA insertions at the NK7.1 locus in our screen. Production and characterization of novel fly lines were performed by students and teachers in experiment-based genetics classes within a geographically diverse network of public and independent high schools. Thus, unique partnerships between secondary schools and university-based programs have produced and characterized novel genetic and molecular resources in Drosophila for open-source distribution, and provide paradigms for development of science education through experience-based pedagogy.


Subject(s)
Animals, Genetically Modified , Bacterial Proteins/genetics , Drosophila/genetics , Enhancer Elements, Genetic , Gene Expression Regulation , Serine Endopeptidases/genetics , Animals , Base Sequence , Binding Sites , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Female , Genes, Reporter , Genetic Loci , Homologous Recombination , Male , Organ Specificity , Position-Specific Scoring Matrices , Protein Binding
2.
Dev Biol ; 450(2): 101-114, 2019 06 15.
Article in English | MEDLINE | ID: mdl-30940539

ABSTRACT

Congenital cardiac malformations are among the most common birth defects in humans. Here we show that Trim33, a member of the Tif1 subfamily of tripartite domain containing transcriptional cofactors, is required for appropriate differentiation of the pre-cardiogenic mesoderm during a narrow time window in late gastrulation. While mesoderm-specific Trim33 mutants did not display noticeable phenotypes, epiblast-specific Trim33 mutant embryos developed ventricular septal defects, showed sparse trabeculation and abnormally thin compact myocardium, and died as a result of cardiac failure during late gestation. Differentiating embryoid bodies deficient in Trim33 showed an enrichment of gene sets associated with cardiac differentiation and contractility, while the total number of cardiac precursor cells was reduced. Concordantly, cardiac progenitor cell proliferation was reduced in Trim33-deficient embryos. ChIP-Seq performed using antibodies against Trim33 in differentiating embryoid bodies revealed more than 4000 peaks, which were significantly enriched close to genes implicated in stem cell maintenance and mesoderm development. Nearly half of the Trim33 peaks overlapped with binding sites of the Ctcf insulator protein. Our results suggest that Trim33 is required for appropriate differentiation of precardiogenic mesoderm during late gastrulation and that it will likely mediate some of its functions via multi-protein complexes, many of which include the chromatin architectural and insulator protein Ctcf.


Subject(s)
Embryo, Mammalian/embryology , Gastrulation , Mesoderm/embryology , Myocardium/metabolism , Stem Cells/metabolism , Transcription Factors/metabolism , Animals , Embryo, Mammalian/cytology , Embryoid Bodies/cytology , Embryoid Bodies/metabolism , Mesoderm/cytology , Mice , Mice, Transgenic , Stem Cells/cytology , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...